Real-Coded Bayesian Optimization Algorithm: Bringing the Strength of BOA into the Continuous World
نویسندگان
چکیده
This paper describes a continuous estimation of distribution algorithm (EDA) to solve decomposable, real-valued optimization problems quickly, accurately, and reliably. This is the real-coded Bayesian optimization algorithm (rBOA). The objective is to bring the strength of (discrete) BOA to bear upon the area of real-valued optimization. That is, the rBOA must properly decompose a problem, efficiently fit each subproblem, and effectively exploit the results so that correct linkage learning even on nonlinearity and probabilistic building-block crossover (PBBC) are performed for real-valued multivariate variables. The idea is to perform a Bayesian factorization of a mixture of probability distributions, find maximal connected subgraphs (i.e. substructures) of the Bayesian factorization graph (i.e., the structure of a probabilistic model), independently fit each substructure by a mixture distribution estimated from clustering results in the corresponding partial-string space (i.e., subspace, subproblem), and draw the offspring by an independent subspacebased sampling. Experimental results show that the rBOA finds, with a sublinear scale-up behavior for decomposable problems, a solution that is superior in quality to that found by a mixed iterative density-estimation evolutionary algorithm (mIDEA) as the problem size grows. Moreover, the rBOA generally outperforms the mIDEA on well-known benchmarks for real-valued optimization.
منابع مشابه
Real-Coded Extended Compact Genetic Algorithm Based on Mixtures of Models
This paper presents a real-coded estimation distribution algorithm (EDA) inspired to the extended compact genetic algorithm (ECGA) and the real-coded Bayesian Optimization Algorithm (rBOA). Like ECGA, the proposed algorithm partitions the problem variables into a set of clusters that are manipulated as independent variables and estimates the population distribution using marginal product models...
متن کاملEVELOPMENT OF ANFIS-PSO, SVR-PSO, AND ANN-PSO HYBRID INTELLIGENT MODELS FOR PREDICTING THE COMPRESSIVE STRENGTH OF CONCRETE
Concrete is the second most consumed material after water and the most widely used construction material in the world. The compressive strength of concrete is one of its most important mechanical properties, which highly depends on its mix design. The present study uses the intelligent methods with instance-based learning ability to predict the compressive strength of concrete. To achieve this ...
متن کاملBayesian Optimization Algorithm
There are four primary goals of this dissertation. First, design a competent optimization algorithm capable of learning and exploiting appropriate problem decomposition by sampling and evaluating candidate solutions. Second, extend the proposed algorithm to enable the use of hierarchical decomposition as opposed to decomposition on only a single level. Third, design a class of difficult hierarc...
متن کاملSTRUCTURAL OPTIMIZATION USING A MUTATION-BASED GENETIC ALGORITHM
The present study is an attempt to propose a mutation-based real-coded genetic algorithm (MBRCGA) for sizing and layout optimization of planar and spatial truss structures. The Gaussian mutation operator is used to create the reproduction operators. An adaptive tournament selection mechanism in combination with adaptive Gaussian mutation operators are proposed to achieve an effective search in ...
متن کاملMultiobjective Bayesian Optimization Algorithm for Combinatorial Problems: Theory and practice
This paper deals with the utilizing of the Bayesian optimization algorithm (BOA) for the multiobjective optimization of combinatorial problems. Three probabilistic models used in the Estimation Distribution Algorithms (EDA), such as UMDA, BMDA and BOA which allow to search effectively on the promising areas of the combinatorial search space are discussed. The main attention is focused on the in...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2004